Battery 3

- LED flashlight → Basically a resistance and a power supply
 the batteries

 ▉ Four AA batteries → show series voltage → 1 cell, 2 cells, 4 cells

 \[\text{How much power does the flash light need?} \]
 → Measure V → OCV
 → under load

 - Measure i → indirectly (load box)
 → directly (in-line)

 → Measure V in parallel
 → Measure i in series

 → Why does V decrease w/time?

 - Consumption → Composition Change
 - give AA Al/C Chemistry
 → mass transport

 → How much change is there?
 → called capacity
Calculating Battery Capacity

First, determine the limiting reactant in the cell. Commercially, it is:

$$\text{MnO}_2 + \text{H}_2\text{O} + e^- \rightarrow \text{MnOOH} + \text{OH}^-$$

Theoretical capacity is given by:

$$\text{Theoretical capacity} = \frac{\text{Change}}{\text{mass}} = \frac{\text{mole}^-}{\text{mol}} \cdot \frac{\text{C}}{\text{mol}e^-} \rightarrow \text{unit} = \frac{\text{C}}{\text{g}}$$

So,

$$\text{theoretical capacity (mAh/g)} = \frac{nF}{3.6 \cdot \text{MW}}$$

For MnO$_2$:

Capacity = \frac{(1)(96485.3)}{(3.6)(86.94)}

= 308.3 \text{ mAh/g}

In an AA, there is typically ~10g MnO$_2$:

Battery capacity $\approx 3000 \text{ mAh}$
How much energy?

Energy (J) = Charge \cdot Voltage

\[
\Rightarrow (3000\text{mA\cdot h})(1.6\text{V}) = 4800\text{ mAh\cdot V} \\
= 4.8\text{ W\cdot h} \\
= 17\text{ kJ}
\]

Specific energy (mWh/mass):

\[
\frac{4.8\text{ W\cdot h}}{25\text{g}} \frac{1000\text{g}}{\text{kg}} = 190\text{ Wh/kg}
\]

What about a toy?

- Globe V w/ t
- Globe i w/ t \Rightarrow Complicated assortment of loads \Downarrow Base load \Downarrow Transient peak load

Your battery will need to consider this.
All of the devices we have looked at connect in series only, but there are advantages to series-parallel arrangements.

Series → increases V
Parallel → increases i

↓
Similar to just increasing Area
↓
so why not just make one big battery?
↓
redundancy

One bad cell in series → device dead

One bad cell in parallel → reduced performance, but still ok usually
↓
good for un-optimized cells like yours!

Last, show pic of AA cross-section & discuss structure → minimizing V, increasing A