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The simple exponential relation M/M,, =kt" is introduced to describe the general solute release
behavior of controlled release polymeric devices, where M,/M,, is the fractional solute release, t
is the release time, k is a constant, and n is the diffusional exponent characteristic of the release
mechanism. It is shown. that this equation can adequately describe the release of drugs or other
solutes from slabs, spheres, cylinders and discs (tableis), regardless of the release mechanism. It
is shown that in cases of pure Fickian release the exponent n has the limiting values of 0.50, 0.45
and 0.43 for release from slabs, cylinders and spheres, respectively. For tablets, and depending on
the aspect ratio, i.e., the ratio of diameter to thickness, the Fickian diffusion mechanism is described
by 0.43<n<0.50. For drug release from spherical polymer particles of a wide distribution, the
value of the exponent n for Fickian diffusion depends on the width of the distribution.

INTRODUCTION

Modelling of controlled release of drugs from
polymeric devices has been the subject of con-
siderable research over the past fifteen years.
Several reviews [ 1-4] have been written which
address the principles of modelling of diffu-
sional release from polymers.

Most of the models that have been developed
are based on solutions of the Fickian diffusion
equation published in the classic book of Crank
[5]. In the pharmaceutical field, several other
equations have found acceptability for the
analysis of drug release from tablets, etc., such
as the Higuchi model [6], its more exact coun-
terpart developed by Paul and McSpadden [7],
the models of Roseman and Higuchi [8,9] and
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the recently developed diffusion/dissolution
models [10].

Unfortunately, over the years the solutions
[1-5] of the Fickian diffusion equation have
been often misinterpreted or misunderstood by
those working in the pharmaceutical and con-
trolled release fields. One finds a plethora of
publications where these equations have been
erroneously applied.

To simplify somewhat the analysis of con-
trolled release data frcm polymeric devices of
varying geometry we pre rosed in 1984 [11,12]
a new empirical, exponential expression which
relates the fractional release of drug, M,/M,
to the release time, ¢t. The purpose of this con-
tribution is to investigate the importance of the
diffusional exponent, rz, of this equation and to
establish simple methods of analysis of con-
trolled release data from various classical geo-
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metric shapes for the case of non-swellable
polymeric delivery sys‘ems.

ANALYSIS OF DRUG RELEASE

Models to describe drug release from a plane
sheet

Fickian diffusional release from a thin pol-
ymer film

Consider one-dimensional, isothermal solute
release from a thin polymer slab of thickness [
where the system is initially maintained at a
constant uniform drug concentration, C,, and
its surfaces are kept at a constant drug concen-
tration, Cy. 't'his situation corresponds to typi-
cal experimental conditions for a release
experiment and is referred to as the perfect sink
condition. For an assumed constant drug diffu-
sion coefficient, D, with one-dimensional dif-
fusion in the x direction, Fick’s second law,
alongwith 1e appropriate initial and boundary
conditions, may be written as

aC _8°C

% Par 0
where

=90 —l2<x<l/2 C=C,

£>0 x=x1/2 C=C,

The solution to Fick’s law in the form of a
trigonometric series under the above-specified
condition., is

M,

M, ~!

= 8 —D(2n+1)%n?
.,;) (2n+1)%a® e [ : 12 ¢

(2)

where M, is defined as the mass of drug released
at time ¢, and M_, is the mass of drug released
as time approaches infinity. An alternate solu-
tion to eqn. (1) that is useful for interpretation

of short-time behavior is given in the form of
an error function series.

&_4 Dt 1/2 1
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where ierfc x represents the integrated comple-
paentary error function of x. For “small times”,
i.e., small values of the dimensionless time 7,

defined as 4Dt/I% eqn. (3) can be approxi-
mated by

M, DT
M. =4 pr (4)

Asindicated by eqn. (4), Fickian diffusional
release from a thin film is characterized by an
initial £/ time dependence of the drug released.
The short-time approximation is valid for the

first 60% of the total released drug
(M,/M_,<0.60).

(3)

Semi-empirical equation for drug release
from thin polymer slabs

A simple semi-empirical equation is intro-
duced to express general drug release behavior
from polymers. For Fickian diffusion in a thin
film, eqn. (4) indicates that the first 60% of the
fractional release at any time can be character-
ized by some constant multiplied by the square
root of time. A second limiting case is one where
the drug release rate is independent of time, i.e.,
the kinetics is of zero-order. Such a situation is
described by a general equation of the form
M, .
T k't (5)
Many situations of release processes fall
between these limiting cases, i.e., they can be
represented by coupling of a Fickian and a non-
Fickian mechanism. Then, a simple expression
of this observation can be heuristically written
t(ly )adding the two expressions of eqns. (4) and

5):

M,
A—Jizk,\/ﬂkzt (6)

A generalized expression of the previous equa-
tion can be written as

M, .

M. kt (7)
where k is a constant incorporating character-
istics of the macromolecular network system
and the drug, and n is the diffusional exponent,
which is indicative of the transport mechanism.
Equation (7) is valid again for the first 60% of
the fractional release. Fickian diffusion is
defined by n equal to 0.50 and non-Fickian by
n greater than 0.50.

Utility of the empirical equation

The empirical transport equation (7) repre-
sents an extension of the short time solutions
for Fickian and non-Fickian diffusional release
from a thin film. In theory, this equation should
only be applicable to the first 60% of fractional
release from thin slabs, for which the assump-
tion of one-dimensional diffusion under perfect
sink conditions is valid. In practice, however,
the equation has been applied to systems of dif-
ferent geometries, to systems where one-
dimensional diffusion cannot be assumed, and
to systems where perfect sink boundary condi-
tions are not maintained.

For example, several investigators have uti-
lized this expression to analyze the first 60% of
the release process from spherical particles.
While the general form of eqn. (7) should be
valid for non-planar geometries, it is not cor-
rect to assume that the values of the diffusional
exponent n which define the limiting transport
mechanisms of Fickian diffusion and zero-order
release are independent of geometry. In the
application of eqn. (7) to non-planar geome-
tries, it has generally been assumed that the
geometric considerations are taken into account
by the constant k; no geometric dependency has
been assumed for the diffusional exponent n.
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Unfortunately, these assumptions are not
correct.

Deviations from one-dimensional diffusion
behavior and changes in the boundary condi-
tions should also affect the interpretation of the
constant k and the diffusional exponent n.

Release behavior from cylinders and spheres

Release from cylinders

For one-dimensional radial release from a
cylinder of radius a, under perfect sink initial
and boundary conditions, with a constant drug
diffusion coefficient D, Fick’s second law may
be written as
aC 9?C 14C
at [aﬁ r Br] (8)

where

t=0 O<r<a C=C,

t=0 r=a Cc=C,

The solution to Fick’s law under the above-
specified conditions is [5]:

M = 4

M—t= _1z=:,a—2078xP[_Da’2‘t] (9)
where the terms «, are the positive roots of
Jo(ﬂan) =0

Jo is the Bessel function of the first kind of zero
order, and ac, are the zeros of that function.
An alternate solution [1,3] useful for interpre-
tation of short-time behavior is given as

M, N Dt 1/2 Dt
M, |ma®] T"Lre?

3/2
_E[ﬂ] + .. (10)

3 | na®

A graphical comparison of eqns. (7) and (10)
shows that the semi-empirical equation (7)
with n=0.50 and k=4 (D/na?)"?is valid only
for the first 15 to 20% of the total release pro-
cesn, i.e., it is incorrect to analyze solute release
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data from cylindrical devices using the ¢!/
dependence of the quantity of solute released,

Release from spheres

For one-dimensional radial re'ease from a
sphere of radius a, under perfect sink initial and
boundary conditions, with a ccnstant drug dif-
fusion coefficient D, Fick’s second law may be
written as

ac @*C 249C

i [a_ ;] w
where

t=0 O<r<e C=(,

t>0 r=a C=Cy

The solution to Fick’s law under the above
specified conditions is [5]:

M, 6 = 1 —Dn?n?t
HL= _anlﬁexp[——az ] (12)

Analterna :solution [1,3] useful for interpre-
tation of short-time behavior is given as

1/2
M, Dt 1 =i na
‘M—;z 6[‘1—2] [m+ 2nz=:llel'f0ﬁ“\/-D t]
Dt [D:t]” D¢
—30—2=6[m~] —3(1—2 (13)

A graphical comparison of eqrs. (7) and (13)
shows that the empirical equation (7) defined
by n=0.50 and k=6(D/na?)'’? gives a t/2
dependence which is valid only for the first 10
to 15% o1 the total drug released. Again, a /2
dependence cannot be used when analyzing data
of solute release from spherical devices.

Dependence of the diffusional exponent on
geometiy

From a theoretical standpoint, Fickian dif-
fusion may be defined by an initial 2 time
dependence of the fracticnal release for slabs,
cylinders, and spheres. From an experimental
standpoint, however, the characteristic time

dependence of Fickian diffusion is of little util-
ity in analyzing release data obtained from
spherical or cylindrical systems; this time
dependence only predicts the first 15% of the
total fractional release by these two mecha-
nisms. Thus, application of the empirical equa-
tion (7) to the first 60% of the releass process
in either cylindrical or spherical systems can-
not be correctly interpreted with reference to
the diffusional limits of n as were defined from
planar geometxy.

The empirical equation (7) can be modified
for application to non-planar geometries in one
of two ways: (i) one can restrict analysis of the
data to the initial 15% of the fractional release,
a ridiculous idea indeed; or (ii) one can define
new diffusional limits of n for each geometry
based on the first 60% of the fractional release.
Only the latter represents a useful modifica-
tion. Limiting the analysis of experimental data
to the first 15% of the release process could ren-
der any value of n obtained statistically
insignificant.

In order to evaluate the dependence of the
value of n on geometry, eqn. (7) was applizd to
the first 60% of the fractional release curves for
Fickian diffusion from a cylinder. The results
of this analysis are presented in Fig. 1. Fickian
diffusion from a cylinder is defined by eqn. (7)
with n=0.451 +0.004 (throughout this work the
confidence limits presented for any parameter
are the 95% confidence limits). Similar analy-
sis was performed on the first 60% of the release
process for Fickian diffusion from a sphere.
Figure 2 represents the results of this analysis.
For a sphere, Fickian diffusion is defined by eqn.
(7) with n=0.432+0.007. It should be noted
that this analysis predicts values of n<0.5; this
corrects an earlier statement that n may take
values only equal or greater than 0.5 [12].

The relationship between the diffusional
exponent n and the corresponding release
mechanism , is clearly dependent upon the
geometry employed as shown in Table 1. A value
of n=1, however, means that the drug release
is independent of time, regardless of the geom-
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Fig. 1. Fractional drug release, M,/M.., versus square root
of dimensionless time, /7, for Fickian diffusional release
from a cylinder. Comparison of the solutions presented by
eqn. (9) (curve 1) and eqn. (7) with n=0.45 (curve 2).
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Fig. 2. Fractional drug release, M,/M,,, versus square root
of dimensionless time, \/;, for Fickian diffusional release
from a sphere. Comparison of the solutions presented by
eqn. (12) (curve 1) and eqn. (7) with n=0.43 (curve 2):
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etry. Thus, zero-order release can exist for any
geometry.

Three-dimensional release behavior

For analysis of three-dimensional release
from a polymer disk a model first developed by
Fuetal. [13] was used. Cylindrical coordinates
were utilized in the solution of Fick’s second law
and diffusion in both the radial direction, r, and
the axial direction, z (diffusion in the third
direction 0 is symmetric) , was considered. Th.is
model is applicable to systems that range in
shape from a flat disk or tablet (where the
radius is much larger than the sample thick-
ness) to that of a cylindrical rod (where the
length of the sample is much larger than the
radius).

Description of the mathematical model

Consider release from a disk which can be
characterized by a thickness [ and a diameter
2a; this system is defined by an aspect ratio of
2a/l. Initiglly the system is maintained at a con-
stant uniform drug concentraiion, C,, and the
surfaces are kept at a constant drug concentra-
tion, C,. For an assumed constant drug diffu-
sion coefficient D with diffusion in both the r
and z directions, Fick’s second law, along wit_h
the appropriate initial and boundary condi-
tions, may be written as

ac_plec, 1ac 52_‘3} (14)
9t | o " ror 0z2®
where
—1l/2<z<l/2 »
t=0  ger<a E=G
z=*+1/2 C=C.
t>0 o 0

The concentration profile defined by the
above diffusion equation was obtained by Carl-
saw and Jaeger [14]. From this drug concen-
tration profile Fu et al. [13] calculated the total
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TABLE 1

Diffusional exponent and mechanism of diffusional release from various non-swellable controlled release systems

Diffusional exponent, n

Drug release mechanism

Thin film Cylindrical sample Spherical sample

0.50 0.45 0.43 Fickian diffusion

0.50<n<1.00 0.45<n<1.00 043<n<1.00 Anomalous (non-Fickian) transport
1.0 1.0 1.0 Zero-order release

drug transferred across the lateral surface and
the two end surfaces of the disk. (The reader
should note that Fu et al. used 2/ as the thick-
ness of this disk whereas the equations pre-
sented here have been adjusted by defining the
thickness by ) In terms of normalized drug
released, M,/M_,, the solution can be written as
follows

M el
M, Z e p -Da,*t]
X 3 o exp.—Dp,t] (15)
m=ol ﬁm
where the terms f,, are defined as
(2m+1)n
L

and the terms a,, are the positive roots of
Jolaa,., =0

Here J, is the zero-order Bessel function of the
first kind and ac, are the zeros of that function.
This model reduces to the equations govern-
ing one-dimensional diffusional release from a
slab or from a long cylinder for a— oo and [ co,
respectively. For the slab case, as a—co each
exponential term exp(—Dea,>?t) of the sum-
mation goes to 1, since a,,—0. Thus one finds
i 2 1 Da. 2
im ) e exp[ —Da,*t]

a—o n=1

Substituting this result into eqn. (15) one
obtains eqn. (2) which defines one-dimen-
sional release from a thin slab. For the long cyl-
inder case, as l-co, f,,»0 so that each
exponential term exp(—Dg,,%t) of the sum-
mation goes to 1. Thus, one finds

lim Z lzlf 5 exp[ —Dp,.%t]

=00 m=

= 1 1
=L =g 17

For this case, eqn. (15) reduces to eqn. (9),
which defines one-dimensional release from a
cylinder.

Development of a short-time approxi-
mation

An approximate solution valid for describing
short-time behavior can be obtained from con-
sideration of the short-time behavior for one-
dimensional release from slabs and cylinders.
From eqgns. (2), (3), (15) and (16) one finds
that the fractional reiease of drug for one-
dimensional diffusion from a slab can be writ-
ten as
M, = 8
H‘i—: ! _MZ=0 lQBmz exp[ _DﬂMZt]

—1/2
1
:4[%] [W (18)

& nl
+2 —1)" ierf
eV T ]

For short times each term in the function
ierfc (nl/2,/Dt) approaches zero. Thus, eqn.
(18) can be written as
oo Dt
Z I"ﬂ ——75exp[—Dp,. t] =1— 4[751 ]
(19)

Similarly for one-dimensional release from a
cylinder, eqns. (9) and (10) can be equated for
short times. From this analysis one finds that

o

4
Z a—z'a—'z' exp[ —Da,,zt]
n=1 n

Substituting eqns. (19) and (20) into eqn.
(15) one finds that for short times the frac-
tional release from a disk can be written as

P Ty
M, ma na?
z[ Dt " I:D::]"2
73 [W] e (21)
2o B)-ee (2)
l na® na?

2n ( Dt )]

3 \na?

This solution simply represents the sums of
the short-time solutions for one-dimensional
diffusional release from the cylinder and the
thin slab with the addition of a “coupling term”
which scales according to the aspect ratio, 2a/l.

Figures 3, 4, and 5 represent a comparison of
the short-time solution given by eqn. (21) and
the exact solution given by eqn. (15). They are
presented as fractional drug release versus
square root of dimensionless time, /7, for
aspect ratios of 100 (thin film), 1 (thick disk),
and 0.01 (long cylinder), respectively. The
dimensionless time 7 for all these comparisons
is defined as Dt/a> For aspect ratios 2a/l> 1
and 2a/l<1 the short time solution is valid for

1.00 T

\speet Ratio = 100

1 L 1
0.00 20 40 .60 .80 1.00

7 = (D )/a

Fig. 3. Fractional drug release, M,/M,,, versus square root
of dimensionless time, ﬁ. for Fickian diffusional release
from a tablet with an aspect ratio of 100 (thin disc). Com-
parison of the solutions presented by eqn. (15) (curve 1)
and' eqn. (21) (curve 2).

20 |- Aspect tatio = 1 T

0.00 1 1 1 1
0.00 20 M0 60 60 1.00

7= (D t)'/*/a

Fig. 4. Fractional drug release, M,/M,,, versus square root
of dimensionless time, \/;, for Fickian diffusional release
from a tablet with an aspect ratio of 1 (disc). Comparison
of the solutions presented by eqn. (15) (curve 1) and egn.
(21) (curve 2).
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20k Aspeet Ratio = 0.01 b

0.00 1 1 1 L
0.00 20 40 .60 80 1.00

= (D "a

Fig. 5. Fractional drug release, M,/M.., versus square root
of dimensionless time, /7, for Fickian diffusional release
from a tablet with an aspect ratio of 0.01 (long cylinder).
Comparison of e solutions presented by eqn. (15) (curve
1) andegn. (2. (curve 2).

the first 65 to 70% of the total release; this is
consistent with the predictive ability of the
short-time solutions for one-dimensional dif-
fusional release from slabs and cylinders. For
aspect ratios of the order 1 the predictive capa-
bility of the short-time solution increases to
include the first 85 to 90% of the total drug
released.

Effect n. aspect ratio on diffusional expo-
nentn

A convenient method of defining the regions
of one-dimensional and three-dimensional dif-
fusional processes is in terms of the aspect ratio.
Equation (21) explicitly incorporates the aspect
ratio in describing the fractional release for sys-
tems exhibiting Fickian diffusion; this fact will
be exploited in determining the minimum aspect
ratio for which the assumption of one-dimen-
sional diffusion is valid. The first 60% of the
fractional release defined by egn. (15) can be
approximated by eqn. (21) for any aspect ratio.

Diffusional Exponent, n

woo it vebd coobud v oootuel o votunl bl
0% 510" 512 s102 510° 5100
Aspect Ratio, 28./!
Fig. 6. Diffusional exponent, n, of eqn. (7) for Fickian dif-
fusional drug release from tablets, as a function of their
aspect ratio, 2a/l.

The first 60% of this diffusional process can also
be described by the empirical equation (7).
Thus, one can define the diffusional exponent
n for Fickian diffusion as a function of the
aspect ratio. The results of such an analysis are
presented graphically in Fig. 6. The confidence
limits shown in the Figure represent the 95%
confidence limits on the value of n obtained at
each aspect ratio.

From Fig. 6 it is obvious that for slabs which
are defined by an aspect ratio greater than 50
the diffusional exponent n is equal to 0.5. Thus
an aspect ratio of 50 defines the minimum
aspect ratio for which one-dimensional diffu-
sion in a slab can be assumed. Similarly, for cyl-
inders which are defined by an aspect ratio
smaller than 0.2, the diffusional exponent n is
equal to 0.45. Hence, an aspect ratio of 0.2
defines the maximum aspect ratio for which the
assumption of one-dimensional diffusion in a
cylinder is valid. The transition from one-
dimensional diffusion in a slab to one-dimen-
sional diffusion in a cylinder is not represented
by a linear function. The diffusional exponent

n passes through a minimum value of 0.43 at an
aspect ratio of 1.

This non-monotonic behavior is a direct
result of the three-dimensional nature of sys-
tems defined by aspect ratios between 0.2 and
50. A simple measure of the three-dimensional
nature of the system can be obtained from con-
sidering the ratio of the total surface area across
which diffusion occurs, A, to the surface area
of the “secondary” surface, A, for the system.
If one considers a cylinder of length / and diam-
eter 2a, the area of the lateral surface is equal
to 2mal and the area of the two end surfaces is
equal to 2ma®

For a thin disk with an aspect ratio of 10
(1=0.2a), the area of the secondary surface, A,,
i.e., the lateral surface, is equal to 0.47a® and
the area of the primary surface, A,, is equal to
2na®. Thus the ratio of the total surface area to
the secondary surface area, A,/4,, is equal to
6/1. The secondary surface represents almost
17% of the total surface area for release. For a
thick disk with an aspect ratio of 1 (I=2a), the
lateral surface area is equal to 47a? and the two
end surfaces have area equal to 2ra® For this
case the secondary surface represents 33% of
the total surface area for drug release. Finally,
for a cylinder with an aspect ratio of 0.1
(1=20a), the area of the secondary surface, A,,
i.e., the two end surfaces, is equal to 27a® and
the area of the primary surface, A,, is equal to
407aZ. The secondary surface area for this case
represents less than 5% of the total surface area.
Thus, the transition from a thin slab to a long
cylinder occurs in a region of maximum second-
ary surface area contribution. This corresponds
to the region of minimum diffusional exponent
n observed in Fig. 6.

Effect of particie size distributions on release
behaviour

The diffusional analysis presented before
related changes in the geometry of a system, i.e.,
sample half-thickness for slabs and sample
radius for cylinders and spheres, to changes in
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the observed release kinetics. For a distribution
of particle sizes, a distribution of diffusion times
should be expected. The effect that such a dis-
tribution has on the observed drug release
behavior can be conveniently interpreted in
terms of variations of the diffusional exponent
n from the value of n for monodisperse systems.

Rosin and Rammler [15] developed a uni-
modal distribution law to describe the size dis-
tributions found in powdered samples. The
Rosin-Rammler (R-R) distribution law is
given as

Wi(x) =exp[ —bx™] (22)

Herz W(x) is the weight of the sample batch
which consists of particles whose diameter is
greater than or equal to x, the distribution con-
stant, m, defines the breadth of the distribu-
tion, and the size constant, b, defines the mean
sample size for the distribution. The larger the
value of m the narrower the distribution, i.e.,
when m approaches infinity, then eqn. (22)
describes a monodisperse system.

In this section, the effects of a particle size
distribution which is described by the R-R. dis-
tribution law on both Fickian and non-Fickian
diffusional release will be considered. The dis-
cussion will be restricted to size distributions in
spherical particles. The analysis, however, can
be easily extended to include distributions in
slab and cylindrical geometries.

Description of the particle size distribution

The particle size distribution function based
on the Rosin-Rammler weight distribution law
is given by egn. (23):

(x) = - L)
W) =—-=—g

=bmx" 'exp[—bx"] (23)
The mean particle size, %, can be defined by eqn.
(24):

r'ii+1/m]j (24)

x= pym
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where I"[1+1/m] is the gamma function.

Niathematical model for release from poly-
disperse spheres

The release model presented here is a modi-
fication of a model developed by Berens and
Huvard [16] from heuristic arguments to
describe the sorption kinetics in heterodisperse
PVC powders. For polydispersed polymer sam-
ples the release kinetics can be modeled using a
modified form of eqn. (12), as given by eqn.
(25), where w(q;) is the weight fraction of par-
ticles having a radius of a;:
M 6 - | —Dn?n?t
M, e p e Lo p[*‘“—]

(25)

This equation simply states that the total
drug released at any time ¢ from a polydispersed
sample is qual to the sum of the individual
contributic as of the mixture components.

Effects of a particle size distribution on the
release kinetics

A comparison of the Fickian release behavior
from a monodisperse sample of 100 ym parti-
cles and a hypothetical mixture of 20% 20 ym,
60% 100 um, and 20% 500 um particles is shown
in Fig. 7. In comparison to the release behavior
from a monodisperse sample, the presence of a
particle size distribution causes a substantial
accelerai_on of the transport at early times and
a marked retardation of the transport for longer
times. For any heterodisperse sample one can
define a mean sample size. This correspends to
a mean diffusion time for the system. The
acceleration of the early portion of the release
curve is the result of release from particles
smaller than the mean size. Particles that are
larger than the average size cause the retarda-
tion of the transport at long times.

The empirical equation (7) was used to char-
acterize the first 60% of the release behavior
obtained from this hypothetical distribution.
For the Fickian diffusion process it was found

/”‘.
s
0 |- 7 -
/ 1
/
/
g .60 - / —
2 /
s 7
N0 & ]
/
/
20 - / -
/
o-m 1 1
0.00 .10 20 .30
1/2
7" = (Dt)/a

Fig. 7. Fractional drug release, M,/M ., versus \/; for Fick-
ian diffusional release. Comparison of drug release from a
sample with a particle size distribution of 20% 20 um, 60%
100 um and 20% 500 um particles (curve 1) and from a
monodisperse sample of 100 um particles (curve 2).

that the data of curve 1 of Fig. 7 could be pre-
dicted by eqn. (7) with n=0.30 +0.01, which is
considerably different from the value of n
obtained for release from a monodispersed
sample, i.e., n=0.43.

In the analysis of the effects of different
geometries and different aspect ratios on the
diffusional exponent, we were able to define
characteristic limiting values of n for Fickian
and non-Fickian transport. The effect that a
particle size distribution has on the value of n
varies with the breadth of the distribution and
the general shape of that distribution. Thus, no
such “limits” can be set on the value of n
obtained for release from samples with particle
size distributions.

Comparison of release from particle size
distributions described by Rosin—Rammler
and step function distribution laws

The effects of two distinctly different parti-
cle distribution functions on the' observed
release kinetic behavior were also considered by

comparing a R-R distribution law with m=3.0
and b=5.7 (narrow distribution) to the flat
profile. Careful examinetion of the R-R distri-
bution law defined by eqn. (22) reveals that as
m approaches zero the distribution of particle
sizes broadens. In fact, for m=0, the distribu-
tion function is equal to a constant and the size
distribution is infinitely broad. This case is
analogous to the flat distribution function.
Thus, the effects of a narrow particle size dis-
tribution on the drug release behavior can be
compared to the effects of an infinitely broad
particle size distribution for the same range of
particle sizes.

Example I: Wide range of particle sizes:
Consider a R-R particle size distribution
between 150 um and 850 um. The particle dis-
tribution between the two particle size limits
can be approximated by 20 discrete particle sizes
and the characteristic diffusion time for one-
dimensional release from a sphere can be cal-
culated using eqn. (26), where the character-
istic diffusion length is the radius of the
sphere, a

aZ

0= D (26)
The drug diffusion coefficient, D, is constant
for a given macromolecule/drug pair. Thus, the
distribution of diffusion times will be propor-
tional to the square of the distribution of the
particle sizes. In this example, the longest dif-
fusion time, which corresponds to the 850 um
particles, is approximately 30 times as large as
the shortest diffusion time, which corresponds
to the 150 um particles.

The observed release kinetics for Fickian dif-
fusion using the narrow and the flat distribu-
tion profiles is shown in Fig. 8. For both
transport mechanisms the flat distribution
profile results in a larger acceleration of the drug
release at short times and a greater retardation
of the release at long times by comparison to
the narrow distribution. This is a result of the
fact that greater “weight” is given to the parti-
cles on either side of the mean sample size in
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Fig. 8. Fractional drug release, M,/M.,, versus \/; for Fick-
ien diffusional release from spherical particles with
Rosin-Rammler distribution (curve 1) and a flat distri-
bution profile (curve 2) according to Example [ in text.

the flat profile. For Fickian diffusion, the dif-
fusional exponents obtained through analysis
using the empirical equation (7) were
n=0.42+0.01 for the narrow distribution and
n=0.40 +0.01 for the flat distribution. By com-
parison with the release behavior from a mon-
odisperse 500 um system, the narrow
distribution profile has no effect on the release
curve, whereas the infinitely broad distribution
has a statistically noticeable effect.

Example II: Narrow range of particle sizes:
Consider the experimental situation where the
polymer sample described in Example I was
sieved into two fractions: (i) 150 ym to 500 um;
and (ii) 500 um to 850 ym. The particle size
distribution of the first fraction may be approx-
imated using 10 discrete particles. The particle
size distribution for this fraction consists of only
particles smaller than 500 ym, which was the
mean particle size in the original distribution
described by the R-R distribution function. The
corresponding flat distribution is characterized
by a mean particle size of 325 uym with equal



0.00 1 L
0.00C 080 .100 .180

TI/:! = (D t)""/a

Fig.9. Fractional drug release, M,/M.,, versus /7 for Fick-
ian diffusioral release from spherical particles with
Rosin-Ramr er distribution (curve 1) and a flat distri-
bution profile (curve 2) according to Example Il in text.

weight given to all the discrete particle sizes. In
this example the longest diffusion time is
approximately 10 times as large as the shortest
diffusion time.

The Fickian release kinetic profiles from the
narrow particle size distribution and the broad
size distribution in this fraction are shown in
Fig. 9. The flat distribution shows a marked
accelera ‘on in the drug reiease at short times
by con.parison to the narrow distribution. This
effect, however, is not real. It is simply a con-
sequence of the smaller average particle size for
the flat distribution, i.e., the flat distribution
has a smaller mean characteristic diffusion time.
Comparison of the diffusional exponents which
characterize the release behavior obtained from
the narrow and the flat distribution profiles
indicates no significant deviations from mon-
odisperse release behavior. For Fickian release,
the diffusional exponents obtained by analysis
using the empirical equation (7) are
n=0.41+0.02 for the flat distribution profile
and n=0.42+0.01 for the narrow distribution.

Effect of variable boundary conditions on
release behavior

The mathematical analysis presented here
was developed with the assumption of perfect
sink initial and boundary conditions. This
implies that the surface concentration is kept
at a constant solute concentration, Cy, during
the experiment. In reality, the surface drug
concentration may change and increase up to
the constant value C,. We will consider the
effect that a variable boundary condition has
on the observed solute release behavior. The
analysis presented here is parallel to that devel-
oped in Crank [5].

For a system where the drug concentration in
the dissolution medium is initially zero but dur-
ing the release experiment it approaches an
equilibrium concentration exponentially, Fick’s
law (eqn. 1) can be solved with the following
initial and boundary conditions

t=0 —l/2<x<l/2 C=0

t>0 x=xl/2 C=Cy[1—exp(—pt)]
This model can be used to represent the con-

ditions encountered in a dynamic release

experiment where the drug diffuses into a liquid

reservoir. The solution to Fick’s law for the
above conditions is given as

1/2 1/2
M, 4D B2
sie=i-ew(-p0 [G2] [ 5]

[—D(2n+1)2n2 ]
8

ﬂ;a;.(z H\z[l - z[gﬂ
n ) _— n n ’3[2

(27)

When f =o0, the drug concentration in the
dissolution medium rises instantaneously to Cy;
for this case eqn. (27) reduces to eqn. (2). The
release curves for finite values of 31%/4D are
shown in Fig. 10 plotted as normalized drug
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Fig. 10. Fractional drug release, M,/M.,, versus \/'? for
Fickian diffusional release under variable boundary con-
ditions defined by £1%/4D of 500 (curve 1), 5.0 (curve 2),
1.0 (curve 3), 0.5 (curve 4) and 0.25 (curve 5).

release versus square root of dimensionless time,
ﬁ. It is quite obvious that the empirical equa-
tion (7) cannot be used to correctly describe
this release behavior. Only for one case, that
corresponding to f1%/4D=5.0, the diffusional
exponent of eqn. (7) could be obtained as
n=1.08+0.03.

CONCLUSIONS

The empirical equation (7) can be used to
relate the amount of drug released as an expo-
nential function of the release time. The diffu-
sional exponent, n, specifies the mechanism of
release.

This equation can be used to analyze drug
release from sheets, cylinders, spheres, discs
(tablets) and polydisperse microspheres under
perfect sink conditions. Characteristic diffu-
sional exponents for Fickian diffusional release
have been defined in each case, for fitting of the
first 60% of the release curve.
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