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A SIMPLE EQUATION FOR DESCRIPTION OF SOLUTE RELEASE
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The previously ( Ritger and Peppas, 1987) introdiiced exponential relation M,/

= kt® may be

used to describe the Fickian and non-Fickian rclease behavior of swelling-controlled release sys-
tems which swell to a moderate equilibrium degree of swelling and are prepared by incorporation
of adrug in a hydrophilic, initially glassy polymer. Again the diffusional exponent, n, is an impor-
tant indicator of the mechanism of transport of a drug through the polymer. Analysis is presented
for solute release from sheets, cylinders, spheres and polydisperse samples.

iNTRODUCTION

In the previous publicaton of this series [1]
we presented an empirical equation which can
be used to analyze data of Fickian and non-
Fickian diffusional release from non-swellable
polymeric delivery systems and to avoid the
sometimes cumbersome exact analysis of the
data:

M, &
M= kt (1)

In swelling-controlled (and in general swell-
able) controlled release systems the dissolution
medium (penetrant) surrounding the con-
trolled release device may enter the polymer at
arate that controls the drug release. As has been
discussed previously, under certain experimen-
tal conditions zero-order release can be achieved
[2]. The prevailing molecular mechanism is a
coupling of diffusion and macromolecular
relaxation as a result of which the drug diffuses
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outward with a kinetic behavior that is depend-
ent on the relative ratio of diffusion and relax-
ation [3,4].

Modeling of release from swellable polymeric
systems belongs to a category of diffusion prob-
lems known as moving-boundary or Ste-
fan-Neumann problems [5,6]. Crank [7] has
pointed out that the required equations for fit-
ting of data in this case are significantly differ-
ent and mere complicated than those presented
for non-swellable systems in Ref. [1]. In fact,
since the constitutive equation for drug trans-
port in the presence of both diffusional and
relaxational phenomena is highly non-linear,
exact analytical solutions are not available.
Instead, numerical solutions must be used.

The exponential dependence of the amount
of drug released, M, /M_,, on time, t, as described
by eqn. (1) can be still used for the analysis of
swelling-controlled release systems (e.g., sys-
tems based on hydroxypropyl methyl cellulose,
poly(vinyl alcohol), poly(2-hydroxyethyl
methacrylate), etc.) as long as these systems
swell only moderately in the penetrant (water,
biological fluid). A first estimate of applicabil-
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ity of this equation in swellable systems is that
the system does not swell more than 25% of its
original volume. Here, we will show how the dif-
fusional exponent, n. can be used to obtain
important information about the diffusional
release mechanism of a drug from a polymeric
device.

ANALYSIS OF DRUG RELEASE

Models to describe drug release from a plane
sheet

Case-] (Fickian diffusion) and Case-II sol-
ute release behavior in swelling-controlled
release systems are unique in that each can be
described in terms of a single parameter. Case-
I transport is described by a diffusion coeffi-
cient, while Case-II transport is described by a
characteristic relaxation constant. Non-Fickian
behavior, by comparison, requires two or more
parameters to describe the coupling of diffusion
and relaxation phenomena.

Fickian diffusional reiease frorn a thin pol-
ymer film

As in our previous work [1], the same equa-
tions can be used to anw.lyze Fickian release from
moderately swelling slabs. The short-time
approximation of the fractional drug released
can be given again by eqn. (2)
M, Dt 1/2
M, _4(nl’) .
Here, A /M, is the fraction of drug released,
D is the drug diffusion coefficient, [ is the initial
film thickness and ¢ is the release time.

Case-ll release from a thin polymer film

The mathematical analysis of Case-II drug
transport from a thin polymer film is presented
here by analogy to the analysis presented by
Enscore et al. [8] for Case-II penetrant trans-
port in a spherical polymer particle. Consider a

thin polymer film of cross-sectional area A and
thickness [ undergoing drug release under Case-
II transport. In the swollen region defined by
X<x<l/2, where X is the position of the
advancing front, there is a linear change of drug
concentration. In the glassy region defined by
0<x< X, there is essentially no drug diffusion.
The release kinetics is assumed to be controlled
by a rate-limiting relaxation phenomenon posi-
tioned at the advancing front. If k, is defined as
the Case-II relaxation constant, then the sim-
ple first-order kinetic expression describing
release from this thin section may be given by
M,

& =hoA (3)
The amount of drug, M,, released from the
swollen region of volume V, where V is equal to
A(l/2—X), at any time t is given by the follow-
ing mass balance

M,=C,A [é_x] (4)

Substituting for M, from the above mass bal-
ance into the kinetic expression one finds upon
simplification
dX Ry

a G
Solving for X and substituting this expressicn
into the mass balance, one obtains the follow-
ing expression for M, as a function of time

4kyA
=

(5)

(6)

Equation (6) may also be written as follows

2C,A || 2k
MF[T] [a‘] M

The term 2C,A/l is the release at long times,
M_,. Equation (7) applies only up to values of
time t=Cyl/2k,; at this time an abrupt change
to M, is observed (see Fig. 1). Thus, eqn. (7)
can be written as

1.20 T T T T

T
Fig. 1. Fractional drug release, M,/M.,, versus 7 for Case-
11 transport from a plane sheet.

M, 2k
M. Gyl @
As indicated by eqn. (8), Case-II drug release
from a thin polymer film is characterized by a
linear time dependence of the drug release
(approximately until the two diffusing pene-
trant fronts of the penetrant meet at the center
of the slab). A graphical representation of the
Case-II solution for slab geometry, plotted as
normalized release, M,/M.,, versus dimension-
less time, 7, which is defined for Case-II kinet-
ics as 2kyt/Cyl, is shown in Fig. 1. )
The model presented above has been gener-
alized [8] for alternative geometries of interest
and is given by equation [9]

N
M, _ ko
M.~ _[I_Coa' t] -

Here @' is the diffusional length of the sathple,
which is equal to the radius, g, for cylindrical
and spherical samples or to the film half-thick-
ness, /, for planar samples. The exponent N is
determined by sample geometry and has values
of 1 for films, 2 for cylinders, and 3 for spheres.
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Semi-empirical equation for drug release
from thin polymer slabs

The simple semi-empirical equation (1) can
be now used to express drug release from swell-
able polymers. For Fickian release from a thin
film, eqn. (2) indicates that the first 6. % of the
fractional release at any time can be character-
ized by some constant multiplied by the square
root of time. For the second limiting case, Case-
11 transport, eqn. (8) indicates that until the
two penetration fronts meet the fractional
release at any time is linearly related to that
time. Many release processes from swellable
polymers fall between these two limiting cases:
as such, they can be represented by a coupling
of the Fickian and Case-II transport mecha-
nisms. A simple expression of this observation
can be heuristically written by adding the dif-
fusion-controlled and relaxation-controlled
release terms according to eqn. (10):

M
M-——;=k,\ﬂ+k2t (10)

The generalized expression of the previous
equation is eqn. (1). The constant % incorpo-
rates characteristics of the macromolecular
network system and the drug, whereas the dif-
fusional exponent, n, is indicative of the trans-
port mechanism. In eqn. (1), Fickian and Case-
1I release are defined by n equal to 0.50 and 1.00,
respectively. For these two limiting cases the
constant k has physical significance, i.e.,
k=4(D/nl?)"/* for Fickian diffusion, and
k=2ky/C,l for Case-1I transport. Anomalous
release behavior is intermediate between Fick-
ian and Case-II; this is reflected by the fact that
anomalous behavior is defined by values of n
between 0.50 and 1.

Release behavior in cylinders and spheres

Release from cylinders

For one-dimensional radial release from a
cylindrical swellable polymer of radius a, under
perfect sink initial and boundary conditions,
with a constant drug diffusion coefficient, D,



40

and under moderate swelling, eqn. (1) may still
be used as discussed before [1]. The limiting
diffusional exponent of eqn. (1) for Fickian
release from cylinders is again n=0.451 +0.004.
For a cylinder of radius a, under perfect sink
conditions, Case-II release is defined by eqn. (9)
with N=2 to give

M b T 2k, [k T
Mw_l'[l“c‘oat] ._Coﬂt_I:Coat:I (11)

Release from spheres

For one-dimensional radial release from a
sphere of radius a, under perfect sink initial and
boundary conditions, with a constant drug dif-
fusion coetficient, D, the exponential expres-
sion of eqn. (1) applies with n=0.432+0.007
for Fickian release. For a sphere of radius a,
under perfect sink conditions, Case-II release is
expressed by eqn. (9) with N=3. This yields

r 3

LG T z]
Mm N Coﬂ

ke, Tk T [k ,T
=Cou ”‘3Lcoa”] +|:Coa ‘]

Dependence of the diffusional exponenton
geometry

Fickian release is defined by an initial ¢'/2
time dependence of the fractional release for
slabs, cylinders, and spheres. Analogously,
Case-II transport is defined by an initial linear
time de; 2ndence of the fractional release for all
geometries.

In order to evaluate the dependence of the
value of n on geometry, eqn. (1) was applied to
the first 60% of the fractional release curves for
Fickian and Case-II release from a cylinder.
Fickian diffusion and Case-II transport from a
cylinder are defined by n=0.451+0.004 and
n=0.89+0.02, respectively (see Fig. 2).
(Throughout this work, the confidence limits
presented for any parameter are the 95% con-
fidence limits.) For Fickian diffusion and Case-
II transport from a swellable sphere the expo-

(12)

Fig. 2. Fractional drug release, M,/M_.,, versus 7 for Case-
1I transport from a cylinder. Comparison of the solutions
presented by eqn. (11) (curve 1) andeqn. (1) withn=0.89
(curve 2).

nent takes the values n=0.432+0.007 and
n=0.85+0.02, respectively (see Fig. 3). Table
1 summarizes the range of values of the diffu-
sional exponent n, and the related transport
mechanism for each geometry. A value of n=1,
however, means that the drug release is inde-
pendent of time, regardless of the geometry.
Thus, zero-order release can exist for any
geometry; only for slabs does this release coin-
cide with Case-II transport.

Effect of particle size distributions on release
behavior

Asdiscussed before [1], the polydispersity of
a microparticulate controlled release sample
leads to changes in the observed release kinet-
ics. The distribution of the particle sizes affects
the diffusion time.

Mathematical model for release from poly-
disperse systems

For Fickian diffusional release, the equation
describing the fractional release for moderately

pres————1
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Fig. 3. Fractional drug release, M,/M,,, versus 7 for Case-
11 transport from a sphere. Comparison of the solutions
presented by egn. (12) (curve 1) andeqn. (1) withn=0.85
(curve 2).

swelling systems is the same as before (eqn.
(25) of Ref. [1]).

For release from a monodisperse micropar-
ticulate systems which obeys Case-II transport,
the release kinetics was defined by eqn. (12).
For release from a hetero-dispersed sample of
the same system the following model can be
proposed:

M, kT

Mm-l ;w(a,)[i o tJ (13)
In eqn. (13) the weight fraction, w(aq;), repre-
sents the portion of the total sample population

TABLE 1
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having precisely a radius g, i.e., the weight frac-
tion is defined at discrete values of the particle
size distribution. The number of discrete values
of a; used in eqgn. (13) must reflect the fact that
the real particle size distribution is a continu-
ous function.

Effects of a particle size distribution on the
drug release kinetics

Comparison was made of the release behav-
ior for Fickian diffusion and Case-II transport
from a monodisperse sample of 100 um parti-
cles and a hypothetical mixture of 20% 20 um,
60% 100 pm, and 20% 500 um particles. The
empirical equation (1) was used to characterize
the first 60% of the release behavior obtained
from the hypothetical distribution. For the
Fickian diffusion process n was 0.30 +0.01 and
for the Case-II transport process n was
0.45+0.02. These values are considerably dif-
ferent than values of n obtained from a mon-

‘odispersed sample, i.e., n=0.43 and n=0.85,

respectively. In fact, for the above hypothetical
distribution, the Case-II transport mechanism
very nearly approximated a normal Fickian dif-
fusional process.

It should be emphasised that the character-
istic effect of a particle size distribution on sol-
ute release is to accelerate the release process
at short times and decelerate the transport at
long times. For a monodisperse system which
exhibits Case-II transport, an appropriate dis-
tribution can be defined so as to approximate
Fickian diffusion. A particle size distribution
cannot slow down the release process at early

Diffusional exponent and mechanism of diffusional release from various swellable controlled release systems

Diffusional exponent, n

Drug release mechanism

Thin film Cylindrical sample ~ Spherical sample

0.5 0.45 0.43 Fickian diffusion

0.5<n<1.0 045<n<0.89 0.43<n<0.85 Anomalous (non-Fickian) transport
1.0 0.89 0.85 Case-II transport
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times. Thus, for a monodisperse system which
exhibits Fickian diffusion no particle distribu-
tion can be defined for which solute release can
be approximated by Case-II drug transport.

CONCLUSIONS

The previously developed empirical expres-
sion relating the fractional drug released as a
function of time can be used to analyze swell-
ing-controlled release systems as long as the
equilibrium swelling ratio is not higher than 1.33
(25% water content by volume).

The diffusional exponent of eqn. (1) is an
indication of the mechanism of drug release and
takes varic 's values depending on the geome-
try of the r lease device.
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